ВЫЧИСЛЕНИЕ СРЕДНИХ ОТ ИЗМЕРЯЕМЫХ ВЕЛИЧИН ТРЕТИЙ ПОСТУЛАТ КВАНТОВОЙ МЕХАНИКИ
ЭСММИО: Электронное Сопровождение Массового Многоуровневого Индивидуализированного Обучения SW-university.cov (С) Чирцов А.С. Лекция записана в ВШЭ _____________________________________________________________ Раздел : Квантовая микрофизика Тема: Основания квантовой механики Лекция: МАТЕМАТИЧЕСКИЙ АППАРАТ КВАНТОВОЙ МЕХАНИКИ Вопрос: ВЫЧИСЛЕНИЕ СРЕДНИХ ОТ ИЗМЕРЯЕМЫХ ВЕЛИЧИН (ТРЕТИЙ ПОСТУЛАТ КВАНТОВОЙ МЕХАНИКИ) Формулируется третий постулат квантовой механики согласно которому средняя от серии измерений какой-либо физической величины в системе, находящейся в заданном квантовом механическом состоянии, может вычисляться как диагональный маточный элемент от оператора соответствующей физической величины на векторах гильбертового пространства, соответствующих этому состоянию. Показывается, что в случае если состояние является собственным для оператора измеряемой физической величины, то результат любого измерения всегда оказывается равным собственному значению этого оператора, соответствующего собственному вектору состояния, в котором находится система. В случае, если состояние не является собственным вектором, средняя значение по серии измерений равно сумме произведений всех мыслимых собственных значений оператора физической величины на квадраты модулей квантово-механических амплитуд нахождение соответствующего исходному состоянию системы квантово-механического состояния в каждом из базисных состояний пермитова оператора измеряемый величины. Из явной аналогии между полученным результатом известной формуле классической статистики для средних значений случайной величины, принимающий дискретный набор значений, квадратам модулей квантовый механический амплитуд следует приписать смысл вероятности нахождения рассматриваемого состояния системы в каждом из базисных состояний, построенных из набора собственных состояний оператора физической величины. Разумеется, все векторы квантово-механических состояний должны быть нормированы так, чтобы квадраты их модулей равнялись единице. Процедуры измерения требуют существенного уточнения, которое иногда выделяется в отдельный постулат, называемый проекционным постулатом. В результате проведения каждого единичного измерения система переходит в одной из базисных состояний операторы измеряемой величины, обязательно соответствующее собственному значению этого оператора, которая реализовалась в результате измерения. Длительность: 0 : 27: 51:: Хостинг: Youtube, Vk