G
enby!

Рекуррентные нейросети | Нейросети для анализа текстов

Лекция по рекуррентным нейронным сетям и их применению для анализа текстов. Страница курса - https://www.asozykin.ru/courses/nnpython
В предыдущих видео мы рассматривали анализ текстов с помощью полносвязных нейронных сетей. Такие сети рассматривают текст как набор изолированных токенов. Однако в тексте важное значение имеет последовательность слов. Поэтому для корректного анализа текста нужны архитектуры нейронных сетей, которые могут работать с последовательностями. Одной из таких архитектур и являются рекуррентные нейронные сети. Основное отличие рекуррентных нейронных сетей - это наличие циклов. Выход нейрона может быть соединен с его входом. В видео рассматриваются: Основные проблемы анализа текста полносвязной сетью. Особенности архитектур рекуррентных сетей. Разворачивание рекуррентной сети во времени. Режимы работы рекуррентных сетей - sequence to sequence и sequence to vector. Использование рекуррентных нейронных сетей в TensorFlow и Keras с помощью слоя SimpleRNN. Лекция "Анализ тональности отзывов на фильмы IMDB" -    • Анализ тональности отзывов на фильмы IMDB ...   Как можно поддержать курс: 1. Яндекс Кошелек - https://money.yandex.ru/to/4100142982...
2. PayPal - https://www.paypal.me/asozykin
Заранее спасибо за помощь! Добавляйтесь в друзья в социальных сетях: вКонтакте - https://vk.com/avsozykin
Instagram -   / sozykin_andr   Facebook -   / asozykin   Twitter -   / andreysozykin   Мой сайт - https://www.asozykin.ru
Мой канал с краткими и понятными объяснениями сложных тем в ИТ и компьютерных науках -    / andreysozykincs  

Смотрите также